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1 Summary

A non-ideal gas model has been developed and retro-fitted into the MSES viscous/inviscid multi-

element airfoil program. The specific applications targeted are compressible airfoil flows in wind

tunnels employing heavy gases. The particular gas modeled in this work has been sulfur hexMtuoride

(SF6), although most heavy gases could be implemented if adequate state and caloric data were

available.

Numerical predictions with MSES indicate that the non-ideality of SF6 significantly influences

airfoil behavior in transonic flows, especially at the higher total pressures envisioned for pressurized

tunnels. The dominant effect is that for a given freestream Mach number, local Mach numbers

in supersonic zones are lower, and shocks are correspondingly weakened. Another (but apparently

smaller) effect is that for a given edge Mach number, a boundary layer in a heavy gas is theoretically

somewhat more resistant to an adverse pressure gradient due to reduced adiabatic heating near the

wall.

As pointed out by Wagner and Schrnidt [1], transonic small-disturbance theory is valid for

non-ideal gases. Similarity between two flows can be obtained if the transonic similarity parameter

1 - M 2
K-

[M2(7'+1)]2/3

is matched, and if the pressure coefficients are scaled by the factor

M 2

A = (7'+1)-1__2

so that the quantity ACL must also be matched between the two flows. The parameters K and A

above are deft_ned in terms of an "equivalent" ratio of specific heats 7', which is derived in Appendix

B for the second-order small-disturbance formulation employed in MSES.

Although similarity between ideal and non-ideal inviscid transonic flows is rigorous in the con-

text of transonic small-disturbance theory, a similarity rule cannot be formulated for viscous tran-

sonic flows. In addition to the Reynolds number Re, Appendix C shows that an additional pa-

rameter 7_ is introduced. This depends on the gas properties and local Mach number, and scales

the effect of the local Mach number on the displacement thickness. It therefore affects viscous

displacement effects and boundary layer response to pressure gradients in compressible flows. It is

highly unlikely that the parameters M, 7', Re, and 7_ can all be combined into one similarity rule

for viscous transonic flows. Fortunately, numerical experiments indicate that matching K, ACL,

and Re (or M °, CL, and Re) still gives good correspondence between air and heavy-gas flows.

Apparently, the effect of %, is not nearly as significant as the other three parameters.

Figure 1 compares Cp vs z/c curves for the RAE 2822 airfoil [2] at M = 0.735 for air, for SF_

at 1 atm, and for SF6 at 3 atm. Figure 2 makes the comparison at a fixed M* = 0.765 instead

of a fixed M. Figure 3 in turn makes the comparison at a fixed K and ACL (corresponding to

M = 0.735 and CL = 0.743 for air). Clearly, matching M* or K is more appropriate for evaluating
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Figure 1: Cp distributions for RAE 2822 airfoil at M = 0.735 for air, SF6 (1 atm), and SF6 (3

atm). CL = 0.743, Re = 6.2 million.

transonic flow characteristics. To illustrate further, drag-divergence behavior for air, SF6 (1 atm),

and SF6 (3 atm) is shown versus M and M* in Figures 4 and 5. As expected from the Cp

comparisons, the effects of the type of gas on transonic drag rise are much smaller if M* is used as

the compressibility parameter in lieu of M. The Mach sweep results were not performed at fixed

K and ACL, since it is not clear how to scale the profile drag coefficient CO over this sweep. In

principle, the pressure drag should be scaled by A, while the friction drag should perhaps be left

unscaled. However, it is impossible to separate these drag components in an experiment, since only

the total drag is obtained from a wake survey.

For high-lift configurations, small-disturbance theory is obviously invalid, but numerical studies

indicate that matching K and ACL (or alternatively matching M* and CL) still gives a reasonably

good match between air and heavy-gas flows. Figure 6 shows the inviscid Cp distributions over a

slatted two-element airfoil described in reference [3]. A freestream Mach number of M = 0.30 in

air produces a fairly strong shock on the slat and a somewhat weaker shock on the main element.

Figure 7 compares the Cj, distributions on the slat for the three gas cases at a fixed sonic Mach

number M* = 0.3257 (corresponding to M = 0.30 for air) and CL = 2.85. The comparison is quite

reasonable. It should be stressed again that simply matching the usual freestream Mach number

M = Voo/a_ and unscaled C/; gives a very poor match in all cases, except of course in effectively

incompressible flows where any gas non-ideality is irrelevant.
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Figure 2: Cp distributions for RAE 2822 airfoil at M* = 0.765 for air, SF6 (1 atm), and SF6 (3

arm). CL = 0.743, Re = 6.2 million.
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Figure 3: Cp distributions for ttAE 2822 airfoil at K = 0.3867 for air, SFe (1 arm), and SFe (3

atm). ACL = 2.095, Re = 6.2 million.
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Figure 4: RAE 2822 drag-divergence behavior versus M for air, SF8 (I atm), and SF6 (3 atm).

C/: = 0.743, Re = 6.2 million.
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Figure 5: RAE 2822 drag-divergence behavior versus M ° for air, SF8 (1 atm), and SFs (3 atm).

CL = 0.743, Re = 6.2 million.
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The bulk of the heavy-gas model development and applicationto transonic,inviscidflowsis

documented in the SM Thesisof Marc Schafer,which isattached as Appendix A. As mentioned

previously,Appendix B derivesthe farfieldbehaviorofa non-idealairfoilflow.This was required

for implementation of new outer boundary conditionsforthe MSES code. Appendix C derives

the shape parameter compressibilitycorrectionforan adiabaticboundary layerin non-idealflow.

This was requiredto implement new heavy-gascorrelationsforthe MSES integralhoundary layer

formulation.
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Chapter I

Introduction

In the past few decades, the designand development of largetransportaircrafthas

reLiedon wind tunnel data taken at significantlylower Reynolds numbers than those

found in operation. The drawbacks of thissubscaledata become apparent when one

considersphenomena such as attachment linetransitionor similaraspectsofboundary

layerbehavior at high Reynolds numbers.

The need for accurate wind tunnel data clearlymandates the constructionof a

suitablehigh Reynolds number testfacility.However, the costof buildinga largeat-

mospheric tunneland largetunnelmodels isprohibitive.Higher Reynolds numbers are

oftenachievedby pressurizingtunnelsto effectivelyincreasethe densityofthe air.This

alternativeispracticalonly up to a point.

A potentialsolutionfollowingthe same basicideareliesupon the use of gaseswith

significantlyhigher molecularweights than air.Candidate gasesincludeFreon-12 or

SuLfurHexaflouride(SFs), but the use of non-breatlutblegases clearlycausessome

problems. These problems willlikelybe insignificantto the costand operationalad-

vantagesofsuch a facility.Combining heavy gaseswith pressurizationwould allowtest

Reynolds numbers comparable to thoseon largetransportsinflight[1].

One complicationisthatFreon and SFs have si_plificantlydifferentthermodynamic

propertiesthan air,especial]yat elevatedpressures.Heavy gasesdo not followthe ideal

equationof stateP - pRT nearlyas wellas airdoes,nor do they maintain a constant

ratioofspecificheats_ -- c_/c_overany significanttemperature range.The following

discussionwillattempt to quant_y the potentialimportance of theseeffectsthrough a

computational study.



Chapter 2

Real Gases

The thermodynamic relations specifically subject to real gas effects are the state equa-

tion

p : p_T (2._)

and the caloric equation,

h = /cpdT = cpT (_.2)

theseparticularforms only beingvalidfora perfectgas.Real gas effectsmay be divided

intotwo cate$ories:

I. Caloricallyimperfectgasesforwhich cp depends on temperature,but which still

satisfyequation (2.I).

2. Non-ideal gases for which cp depends on both pressure and temperature, and

equation (2.1)no longerholds.

The firsteffectresultsfrom the introductionof multiplevibrationalmodes for poly-

atomic moleculeswhich become more important at highertemperatures. The second

effectdepends on intermolecularfozceswhich become strongeras a gas moves towards

liquefaction,ie.higherpressuresand lower temperatures.

2.1 Calorically Imperfect Gases

The only differencebetween a perfectand an imperfectgas stems from the dependence

of c_ on temperature in the imperfect case. A cursory _T_mln_tion of experimental data

for $F6 shows that, in the range of temperatures likely to be found in a wind tunnel

11



test,thisdependence islinearin temperature.

%(T) = a + bT

Therefore, equation (2.2) becomes

bT 2

h(T) = _T + -7-

which may be easily inverted to find T(h).

- -_+ +T

(2.3)

(2.4)

(2.5)

2.2 Non-Ideal Gases

The stateequationfora perfectgas (2.1)derivesfrom a kineticmodel ofgas molecules

which assumes thatthemoleculesarepointmasses and thatthey do not exertany forces

on one another except instantaneouslyduring collisions.Clearlythese assumptions

become lessaccurateas the molecular weight of the gas increases.Van der Wsals's

equation

(p + p2 )I1 - = pRT /26)

contains two correction to equation (2.1): a corrects the pressure to account for inter-

molecular attraction, and _ corrects for the volume of the molecules themselves.

Using a non-idealstateequationlikeVan der Waals's causesmany seriouscompli-

cationsas enthalpy,%, % etc.now depend on pressureas wellas temperature. Despite

thesecomplir2ttions,enthalpyand entropymust remain stateva_'iablesregardlessofthe

form of the stateequation.That is,localentropyand enthalpy must depend only on

the localpressureand temperature and not on the upstream conditions(ie.the gas

history).

Liepmann and Roshko [2] equatethisconditionwith therequirementthata canonical

equationof statemust have one of thesefourforms:

e = e(_,p) (2.T)



h = h(s,p) (2.8)

= f(T,p) (2.9)

g = g(T,p) (2.10)

Here e -- h - p/p is the usual internal energy, f -- e - Ts is the free energy, and

g _- h - Ts is the free enthalpy.

For a conventional flow solver, the enthalpy defintion (2.8) appears best; however,

specifying the state in this specific form is not convenient because the entropy s is not

readily available to the flow solver. Liepmann and Rosh.ko propose a more suitable form

_LP = z(p,r) (2.11)
pRT

which requires T(p, h) to have a form which makes h a state variable.

For a Van der Waals's gas

which clearlyapproaches the idealstateequation fora,_9 _ O.

1 ap

Z = 1 - _p fit (2.12)

For typically small

valuesof a and/3

Z _ 1 + p - -_ 1 + _- (2.13)

where the second approximation is made to make Z = Z(p, T) explicitly. Liepmann and

Roshko write equation (2.13) in more general form as

Pc

with Pc and Tc being the criticalpressureand temperature ofthe gas,and _bevidently

being a universalfunctionwhich they tabulatefor gases other than airbut with ap-

proximatdy the same molecular weight. For heavier gases such as SFs it is best to fit a

curve to experimental data as explained in Appendix A. For SFs, s good curve fit takes

the form

= c= + + (2.15)

It is now necessary to determine the specific heat c_pa_ity c_(p, r) *o that the enthalpy

function h(p, T) can be obtained. Liepmann and Roshko combine two forms of the

13



equation of state h(p, T) and s(p, T) into the fundamental reciprocity relation between

h(p,r) _d p(p, r)

Oh _ I TO(1/p) (2.16)
Op p OT

which is valid for any gas. Combining this with the state equation (2.11) gives

Oh RT 2 (OZ)p RT¢ _,(_) _ 9v(r ) (2.17)

Since Oh/Op = 5(r) only depends on the temperature, both h and cp must be linear in

the pressure as follows.

h(p,r)

cp(p,r)

= /c-p(r)dT + pF(r) (2.18)

Oh
=-- aT (2.10)

d_"

= c-p(T) + p_-_ (2.20)

p T_ _b" (_) (2.21)= cp(r) - R _

As in the case of the calorically imperfect gas, c-p(r) has the form

6p(T) = a + bT (2.22)

Substituting thisintothe enthalpy equationgives

bT _ pRTe T/h(p,r) = aT + -V + -- ¢'( ) (2.23)Pc

It is also possible to determine the caloric equation by expressing the internal energy

(_) as e(p, r) [3].

14



Chapter 3

Solving the Euler Equations

These gas models may be readily integrated into an existing flow solver which solves

the integral form of the steady Eater equations:

j_._dA = 0 (3.1)

f (pff . h ff p_) dA = 0+ (3.2)

ho -= h + lu_---_-2= constant (3.3)
2

These equations are exact for any fluid flow, but must be supplied with a state equation

to relate the pressure p to the enthalpy h and the density p. In addition, the upwinding

scheme used to capture the shocks requires the local Mach number while the boundary

conditions and evaluation of shock losses require the local stagnation conditions.

It is desirable to nondimensionalize the equations, and the following scheme is used

where () denotes the dimensional quantitiy and (),el denotes a reference quantity:

p = _/_._

Y = _'/Y,d

h = h _--_--
P_

Furthermore, %, _, and R are nondimensionalized using R resulting in several new

nondimensional parameters.

a = a/R

bT,,_

2a

15
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For the resultspresentedhere, the referenceconditionsare chosen to be stagnation

conditions.

3.1 Calorically Imperfect Gas

The nondimensional form of the caloricequation which governs the behavior of the

imperfectgas is:

h(r) = / %dT (3.4)

= aT + a_T 2 (3.5)

which may be invertedto giveT as a functionof h.

T(h) = -I + y_l +4nh/a
2j9 (3.6)

With T obtained from h, p may be determined using the ideal gas law (2.1) and a

specified value of p. The local Mach number comes from the familiar defintion of the

speed of sound:

0p
a 2 = _. =7T (3.7)

The localvalueof7 may be found from equation (2.3).

7 = %-- = a + 2a_T (3.8)
1 - a - 2a_T

The last remaining difficulty is the determination of the isentropic relations between

pressure, density, and temperature. These relations are necessary to calculate stagnation

conditions from flow conditions. The familiar perfect gas relations

•_oo = 1+ M 2

-1 _A_

do not hold for a calorically imperfect gas.

The proper forms are obtained from the formal statement,

dh = T d# + dp
P

(3.9)

16 _'_



and for an isentropic process ds = O:

dh = -_ (3.zo)
P

From the definitionofenthalpydh = cpdT, and foran idealgas p/p = T, so equation

(3.10)becomes

cp(T)dT dp= -- (3.1_)
T p

Integratingthisequationgives

po = exp(-_logT + 2_(1 - r)) (3.12)
P

and the isentropicdensityrelationthen followsdirectlyfrom the stateequation.

p = p T(ho) (3.13)
Po Po T(h)

Strictlyspeaking,solutionofthe Euler equationsrequiresnothing else.However, if

a Newton-IL_phson techniqueisused,allof the necessaryequationsmust be linearized

for the Jacobian matrix. In the case of the caloricallyimperfectgas, the equations

axe slightlymore complicatedthan for a perfectgas,but they may stillallbe written

explicitly.Thereforethe linearizationsaxe easilydone by differentiatingthe relevant

equations.

3.2 Non-Ideal Gas

The nondimensional equationsdescribingthe non-idealgas are the stateequation

and the caloric equation.

p 1 + p,_(,-_)
pT Zo

= .q,,. z,l1

Z0 isanother parameter which may be describedinterms of I-and r.

1
= 1 + _( )zo= po- o

(3.14)

(3.15)

(3.16)

17
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The non-idealgas presentssome difficultyas the enthalpydepends on the temper-

ature and the pressure.Therefore,from equations(3.14)and (3.15),p and T may be

found using a Newton-Raphson system to drivethe followingresidualsto zero.

p I + _(_) (3.17)
R1(p,r)= pT Zo

R2(p,r)= h- _r + _T2 + p ¢'(_.r) (3.1s)

The localMach number depends on the speed of sound which must be found from

the definition:

This iscalculatedas follows:

a2 : _p, (3.19)

-_P h OP IIdp = Op dp + -_ p
dh

but dh = dp/p for an isentropic process, and hence

°2_ _

The local7 reallyhas no me_nlng and need not be calculated.

(3.20)

(3.21)

The extracomplexityofthe non-idealgas appears inthe calculationofthe sensitiv-

ities.Sincep and T axe found by an iterativeprocessthey must be found by perturbing

the Jacobian matrix of the converged Newton-Raphson system. A perturbationin h

and p is related to a perturbation in p and T by the condition that the R(p, r, h, p) must

remain zero.

6RI _ oa
-- -" Jr

Numerically inverting this system gives the required derivatives.

(3.23)

The secondderivativesare found ina similarfashionstartinginsteadwith !_ and -_p

a_ the residuals.Using a subscriptnotationforthe derivatives(_ _=Ph):

Jr (3.24)
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A similar system with Rzp and R_p as residualsisalsoformed. As above,numerically

invertinggives _ : -_, _ : -_-_p_etc. These manipulationsare implemented in

the sottrcecode in Appendix B.

The lastremaining task iscalculationof the stagnationconditionsand, again,it

is not possibleto find an analyticexpression. Another Newton-Raphson system is

constructedwhere the firstresidualcomes from equation(3.15):

RI : ho- h(p,T) (3.25)

The second residualisderivedby rearrangingequation(3.9)

ds dh + dp
T pT (3.26)

= _dT + d(p_) dpz (3.27)
7" p

- _dT + d(lx/rl_ e) - wd(p_) dp (3.28)
P

Integrating gives:

-

The second residualmay then be formed

(3.29)

R2 = -_1.- siP, T) (3.30)

where sz isthe entropy ofthe staticconditions.

Driving these two residualsto zero givesthe stagnationconditionsPo, To. The

dezivatives-_p,_z, etc,needed forthe Newton-Rsphson solvermay then be found by

perturbingthe convergedJscobian matrix and relatingthe resultingderivativesto the

staticconditionsthxongh the chain rulesad eqtmtions(3.15)sad (3.29).This process

isidenticalto the one used above to findp sad T and theirderivatives.

19



Chapter 4

Results

After developingthe models forthe caloricallyimperfectand non-idealgases,the next

stepwas to evaluatethe differencesthesechangescaused ininviscidflows.The primary

quantitiesofinterestare thelocationofshocksand theirstrengthwhich isdefinedas the

ratioofof stagnationpressuresacrossthe shock. For a perfectgas,the shock strength

may be expressedas a functionof the upstream Mach number M1.

po_.__:= [1+ 27 _,,_I)]-I/('-I)[ (7+I)M_ ],/(,-I)m_ -y+ 1_''' [(#---T)M-_'_-7- 2' (4.1)

However, for the non-ideal gas, this relation must be calculated numerically.

1.000 _ P er£ect

Po: Istm

""-'.._ _-.._ ...... Po: 3arm

-.

0.9511 ,.. -,

Strength """ "_%

", %"

", N.

0.9049 "', %'%
",. %'%"

• , %.

"', %%"

0.8S0 , , , ,
1.2oo 1._ 1._

M1

Figure 4.1: Stagnation Pressure Ratio(Strength) vs. Upstream Mach No. for Air and

SFs at latm and 3atm
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Figure4.2:One dimensionalDuct Flow

4.1 One Dimensional Duct Flow

The first comparison of the different gas models was a study of the flow in a converg-

ing/diverging nozzleusinga quasione dimensionalEuler solver.This flowischaracter-

izedby sonicflow at the throatwith a shock downstream to match the specifiedexit

pressureas shown in figuxe(4.2).

As a basis for comparison of the different gas models in a duct flow, the non-

dimensional reference enthalpy (hopo/Po) was made equal for all three cases.

ho = 3' (4.2)
7-1

= a(1 + ]3) (4.3)

= a(1 + a) + x_'(_) (4.4)
zo

With ho held constant, 7 therefore depends on a, _, _r, and _'. The exit presure ratio is

also held constant. Under these conditions, the slope of the c_ versus T curve 09) had

tittle or no effect on shock strength or position relative to the perfect gas as shown in

a e(4.s).
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For the non-ideal gas, _ and r are not really independent parameters and may be

combined into Zo. Figure(4.4) shows the variation in shock strength and position as

functions of Z0 and the corresponding perfect gas results with 7 adjusted to preserve the

stagnation enthalpy as above. These plots clearly show that it is not possible to mimic

the effects of the non-ideality by changing 7 as in the case of the calorically imperfect

gas. The difference in shock strength and position becomes larger and larger as the gas

becomes less ideal.
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The Last test conducted with the one dhneusional flow model was to determine the

effects of the various gas models on the upwindlng scheme needed for stability of the

numerical scheme. The flow solver drives the momentum equation residual to zero,

R1 - p_qiA_(¢_ - q;_) + p_A_ - p_-IA___ +/_ + P_-I (A_ - A__I) (4.5)
2

where the upwinded speed is defined as

qi : qi -- _'/(qi -- q_-l)

and p_ is non-zero only if M_ is greater than Me.

_(M,(q,)) = 7 1- M?J

(4.6)

(4.?)

Initially, the exact 7 was calculated at each node along with all the necessary l_-

earizations and used in the upwinding scheme. Under these conditions, the flow solver

converged with Mc ___1. However, the upwindlng is relatively insensitive to the exact

value of 7 even though the stability analysis used to derive equation(4.7) ignored 7

perturbations. Using a constant value of 7 had absolutely no effect on the viable range

for Mc or the rate of convergence.

4.2 Two Dimensional Results

The subroutine which appears in Appendix B was incorporated into MSES, the multi-

element version of the two dimensional transonic airfoil design/mmlysis code ISES [4].

Numerical experiments carried out were limited to single-element inviscid cases to more

clearly demonstrate the effect of the new gas model. Figure(4.5) shows am overlay of the

Mach distributions for a test airfoil run in 5Fs at two different stagnation conditions and

in air. All three cases axe at matched freestream Mach number and lift coefficient. Note

that they are not at the same angle of attack. The SFs is characterized by stagnation

pressures of latin and 3atm and a stagnation temperature of 310K.

Airfoils tests in heavy gases will be much more worthwile if some relationship may

be found so that the tests reflect the airfoil performance in air. The only parameters
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Figure 4.5: Comparison of Air and SF6 at Fixed M and C_

which may be adjusted in a wind tunnel test are the Math number, stagnation con-

ditions, and angle of atttack or CL. Fignre(4.5) shows an attempted match keeping

M and C_ constant: clearly, this is not an eft'ective technique. After a good deal of

experimentatatJon, the best match was achieved by running the different gases at the

same M* which is defined as the ratio of freestream velocity to the speed of sound at

sonic conditions. Figure(4.6) shows the case in air from fig_ze(4.5) compared with SF6

(latin and 3atm) at the same M*.
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Figure 4.6: Comparison of SFe at latin and 3atm to Air, M* = .740, Cr_ = .9
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A case with s weaker shock, figure(4.7) was used to further verify this relationship.

The match is slightly worse, but this is to be expected because a weak shock is much

more sensitive to small changes in M than a strong one. As an alternative to matching

M*, Anderson [5] proposes mateh/ng the small disturbance similarity parameter _ and

ACL where

A

(,M_(7, + 1))2/s (4.8)

' + z)
z - (4.9)
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Figure 4.8: Comparison of 5Fs at latm and 3arm to Air, x = .439, ACe = 2.18
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Chapter 5

Conclusions

The models derivedabove adequatelydescribethe thermodynamic behaviorofnon-ideal

and caloricallyimperfectgases.Despitesome minor complicationsin l£nearizingthese

models, they were implemented in routinessuitableforincorporationintoexistingflow

solversbased on Newton's method. First,a quasione-dimensionalflowsolverwas used

to examine the in_uence ofthe variousnon-dlmensionalparameters which govern the

behavior ofthe differentgases.

Transonicairfoiltestcasesfor air and SFs were then used to study the influenceof

parameters which may be controlledina wind tunnelexperiment:stagnationpressure,

freestreamMach number, and angle of attack. The goalof thisstudy was determine

the conditionsunder which a wind tunnel testin a heavy gas would produce results

comparable to those found in air. Matching M* and CL or _ and ACL were both

effectivefor the testcasespresentedhere. Further study isnecessaryto determine

which isbestformulti-elementcases.

The resultsare encouragingin that they definitelyhintat the possibilityofdirectly

relating heavy gas test data to performance in air. It is first necessary to verify experi-

mentally the mode] for SFs, and to invest_ate the effects of non-ideal gases on viscous

SOWS.



Appendix A

Curve Fit For SF6 State Equation

A curve fit may be found for the function $ (_) for any gas given experimental state

data. With the density(p) measured at a number of differentpressures(p) and tem-

peratures(T),a vectorisdefinedcontainingthe differencebetween the realgas and a

perfectgas at each data point.

at-_t - 1

Z=

_-I

Defaxing0 = -_, the matrix A containsthe stateinformation.

(A.1)

1

/_.e!
• : : : :

.oo (A.2)

The goal isto finda stateequationagreeingcloselywith the experimentaldata in

but ofthe simpleform:

f
Z(p,T)=l+ p | C,_

L
C._I ... Co]

e,,

_-1

1

(A.3)

Therefore

--_A_ (A.4)

and _ is found by the technique of linear regression:

= (ATA)-ZATZ (A.S)

The results presented in this thesis were based on a quadratic fit for _bfrom approximate

data for SF6. The required data may be found in [6].
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Appendix B

MSES Subroutine for Non-Ideal Gas Model

Jubroutine hgpare(alfl,btal, taul, ccO,ccl,cc2, hO)

C---

Initializes non-ideal gas routines.
Formulation derived in Schafer SM thesis.

Input:
alfl

betl

Constants for Cp(T) in caloric equation: Cp = a(1 + bT)

taul Constant in phi(T) in non-ideality factor Z(p,T)

ccO Constants defining phi(T) in polyuonial fore:

ccl

cc2 phi = cO + cl(tau/T) + c2(tau/T)**2

Ousput:

hO Enthalpy at reference conditions pO, TO

Tnternal output:

zO Non-ideality factor Z(pO,TO) at reference conditions

C .......

c

c

c

implicit real*4 (a-h,m,o-z)

common /nongss/

k all, bta, pi, tau, zO
coamon /nonfit/

k c2, cl, cO

pu$ input paraaetera into comaon blocks

all = all1

bta = btal

t_ • taul

cO =ccO

cl :ccl

c2 = cc2

pi : 1.0

calculate reference non-ideality factor and enthalpy

zO = 1.0 + pie(c2/tause2 + cl/tau + cO)

hO : (airs(1. + bta) + pi/tausphid(1./tau)) / zO
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C ....

subroutine nideal(hO,r,q, p ,p_r ,p_q,

t msq,msq_r,msq_q)

c

c

c

c Input :

c hO stagnat ion enthalpy

c r density

c q speed

c

c Output :

c p pressure

c p_r dp/dr

c p_q dp/dq

c msq square of Math number N'2

c msq_r dM" 2/d.r

c msq_q d]4" 2/dq

C .... "

Calculates pressure and Mach number for specified

stagnation enthalpy, density, and speed.

implicit real*4 (a-h,n,o-z)

set static enthalpy

h = hO - 0.Seqe*2

h_q = -q

subroutine ngasp$(h,r,p,p_r,p_h,p_rr,p_hh,p_rh,
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• _,t_r,__h,t_rr,t hh,t_rh)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Calculates pressure and temperature for

specified static enthalpy and density.

Input:

h enthalpy

r density

Output :

p preHure

p_r dp/dr
p_h dp/dh

p_rr d'2p/dr*2

p_hh d'2p/dh'2

p_rh d*2p/drdh

t temp er aSur •

t_r dr/dr ... etc.

C ........................................................

implicit real*4 (a-h,m,o-z)

dimension a(2,2), ai(2,2), aih(2,2), air(2,2),

b(2,2), bh(2,2), br(2,2)

couon /nongu/
all, bta, pi, tau, zO

C

c .... Newton convergence tolerance

data eps /5.0E-6/

C

c .... initial guess from imperfect ideal gas

if(bta.eq.O.O) then

t = h/all

else

t = (-1.0 + sqrt(1.O + 4.0ebtaeh/alf)) / (2.0ebta)

endif

p = ret

C

Newton loop to converge on correct p,t

itcon = 16

do 100 iter=l, itcon

set and lineazize non-ideality factor Z(p,t)

ttc = 1./(taue_)

ttc_t = -l./(taue_ee2)

z = I. ÷ p_pi*phi(tt¢)
z_p = pi*phi(ttc)
z_t = p_pi*phld(t¢c)*ttc_t

residual I: eta_e equation

reel = p/(r*t) - z /zO
rl_p = l./(r*_) - z_p/zO

rl_t : -p/(rstse2) - z_t/zO
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C

IO0

C

C

3

C

tml = (alf*t + all*bract**2) / zO

tnl_p = O.

tml_t = (all + 2.*alf*bta*t ) / zO

tm2 = p*pi/tau*phid(ttc) / zO

tm2_p = pi/tau*phid(ttc) / zO

tm2_t = p*pi/tau*ph/dd(ttc)*ttc t / zO

residual 2: caloric equation

res2 = h - (tml + tm2)

r2_p = - (tml_p + tm2_p)

r2_t = - (tml_t + tm2_t)

set Jacobian matrix

a(1,1) = rl_t

a(1,2) = rl_p

a(2,1) = r2_t

a(2,2) = r2_p

find inverse Jacobianmatrix

dstinv = 1.0 / (a(1,1)*a(2,2) - a(1,2)*a(2,1))

ai(1,1) = a(2,2).detinv

ai(2,2) = a(1,1)*dstlnv

ai(1,2) = -a(1,2)*dstinv

ai(2,1) = -a(2,1)edstinv

sot Newton changes

dt : -(ai(l,l)*reml + ai(l,2)*re82)

dp = -(ai(2,1)*resl + al(2,2)sras2)

rlx = 1.0

if(rlx*dp .gt. 2.Sap) rlx = 2.5*p/dp

if(rlxsdp .It. -.8*p) rlx = -.8*p/dp

if(rlxsdt .gt. 2.5*t) rlx = 2.Set/dr

if(rlxsdt .it. -.Set) rlx = -.8*_/dt

updat o varlablo8
t = t + rlxsdt

p = p + rlx*dp

convorgenca check

if (abs(dplp) .le. spa .and. abe(dr/t) .le. epm) So:o S

coal_ians

grtte(s,*) 'IGISPT: Convergence failed.'

rrite(e,e) 'dp dT :', dp, dt

write(.,*) 'p T h r:', p, t, h, r

continue

set residual derivatives er_ input z,h variables

r1_r = -p/(ree2et)

rl_h = O.
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C

C ....

C

C

C ....

r2_r=O.

r2_h=l.

b(l,l) = rl_r

b(l,2) = rl_h

b(2,1) = r2_r

b(2,2) = r2_h

set p,t derivatives wrt r,h

t_r = -(ai(1,1)*b(1,1) + ai(1,2)sb(2,1))

t_h = -(ai(1,1)*b(1,2) + ai(1,2)*b(2,2))

p_r = -(ai(2,1)*b(1,1) + ai(2,2)sb(2,1))

p_h = -(ai(2,1)*b(1,2) + ai(2,2)mb(2,2))

set second residual derivatives wrt r,h

tic = i,l(tau*t)

ttc_t = -1./(tau*t**2)

tic_it = 2./(tau*t**3)

z = 1. + p*pi*phi(ttc)

z_p = pi*phi (tic)

z_pt = pi*phid(ttc)*ttc_t

z_pp = O.

z_t = pspiSphid(ttc)*ttc_t

z_tt = p*pi* (phidd(ttc)*ttc_t**2 + phid(ttc) *tic_it)

rl = p/(r*t) - z /zO

rl_p = l./(r*t) - z_p /zO

rl_pt = -l./(r*t**2) - z_pt/zO

rl_pp = - z_pp/zO

rl_t = -p/(r*t**2) - z_t /zO

rl_tt ='2.*p/(ret**3) - z_tt/zO

r1_r = -p/(r.*2et)

rl_h = O.

rl_hp = O.

rl_ht = O.

rl_rp = -l./(r*s2st)

r1_rt = p/(rss2st*s2)

r1_rr = 2.*p/(r**S*t)

tal = (alf*t + alfebtaet**2) / zO

tal_t = (all + 2.*alf*bta*_ ) / zO

tal_tt = ( 2.*alf*bta ) / zO

Cml_p¢ = O.

Cml_p = O.

tml_pp = O.

tm2 = pspl/tau*phid(ttc) / zO

ta2_p = pl/tauSphid(ttc) / zO

ta2_p¢ = pl/tau*ph/dd(ttc)sttc__ / zO

ta2_pp = O.

tm2_t = p*pi/tau* ph/dd(ttc)*ttc_t / zO

tB2_tt = pspl/taue(ph/ddd(t¢c)*ttc_t**2 +
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& ph/dd(ttc)*t_c_tt) / zO

r2 = h - (tml + tm2)

r2_p = - (tml_p + tm2_p)

r2_t = - (tm1_t + tm2_t)

r2h = I.

c

c

c .... set and linearize new residuals: rlh = drl/dh = O, r2h = dr2/dh = 0

ph = p_h

th = t_h

rlh = rl_p *ph + rl_t *th + rl_h

rlh_ph = r1_p

rlh_th = rl_t

rlh_p = r1_pp*ph + rl_pt*th + rl_hp

rlh_t = rl_pt*ph + rl_tt*_h + rl_ht

rlh_h = O.

rlh_r = -ph/(r**2*t) + th*p/(r**2*t**2)

r2h = I. - tml_t*th - tml_p*ph - tm2_t*th - tm2_p*ph

r2h_ph = - tml_p - tm2_p

r2h_th = - tal__ - t12_t

r2h_p = - tml_pt*th - tm1_pp*ph - ti2_pt*th - tm2_pp*ph

r2h_t = - tml_tt*th - tml_pt_ph - tm2__*th - tm2_p_eph

r2h_h = O.

r2h_r = O.

a(1,1) = rlh_th

a(1,2) = rlh_ph

a(2,1) = rlh_th
a(2,2) = r2h_ph

detinv : 1.0 / (a(l,l)ea(2,2) - a(l,2)*a(2,1))

aih(l,l) : a(2,2)edetinv

aih(2,2) = a(l,l)edetinv

aih(l,2) = -a(l,2)*dotinv

aih(2,1) = -a(2,1)*do_Inv

dth = -(a:Lh(1,1)*rlh + aih(1,2)*r2h)

dph = -(aih(2,1)*rth + alh(2,2)*r2h)

c

C _ l _l_ + I_h

c _h = th + dth

c

c

c .... sot end lt.no_tzÙ nor roetduL].s: rlr = drl/dr = O, r2r = dr2/dr = 0

pr = p_r

tr = t_r

rlr = rl_p *pr + rl_t *tr + rl_r

rlr_pr = rl_p

rlr__r : rl_t
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C

rl=_p
rlr__

rlr_r

rlr_h

r2r

r2r_pr

r2r_tr

r2r_p

r2r_t

r2r_h

r2r_r

= zl_ppspr + rl_pt*_r + r1_rp

= r1_pt*pr + rl_tt*tr + rl_rZ

= r1_rp*pr + r1_rt*_r + r1_rr

= O.

= - tml_t *tr - tml_p *pr - t=2_t *tr - tm2_p *pr

= - tml_p - tm2_p

= - tml.t - tm2_t

= - tml_pt*tr - tml_pp*pt - tm2_pt*_r - tm2_pp*pr

= - tml_tt*tz - tml_pt*pr - tm2_tt*tr - tm2_pt*pr

-- O.

= O.

a(1,1) = rlr_tr

a(1,2) = rlr_pr

a(2,1) = r2r_tr

a(2,2) = r2r_pr

detinv = 1.0 / (a(1,1)*a(2,2) - a(1,2)*a(2,1))

air(l,1) = a(2,2)*detinv

air(2,2) = a(1,1)*detinv

air(l,2) = -a(1,2)*detinv

air(2,1) = -a(2,1)*detinv

dtr = -(air(1,1)*rlr + air(1,2)*r2r)

dpr = -(air(2,1)*rlr + air(2,2)*r2r)

C

c pr = pr + dpr

c tr = tr + dtr

C

C

c .... calculate responses in dZ/dh and dp/dh to unit h pertuxba_ion

dxlh = rlh_h + rlh_p*ph + rlh_¢*¢h

dr2h = r2h_h + r2h_p*ph + r2h_t*¢h

dxlr = rlr_h + rlr_psph + rlr__s_h

dr2r = r2r_h + r2r_psph + r2r_tsth

dth = -(alh(1,1)*drlh + aih(1,2)*dr2h)

dl_ = -(alh(2,1)*d=_h + alh(2,2)*dr2h)
*.hh = dth

d_h • -(alr(1,1)*drlr + alz(1,2)*dr2r)

dph = -(alr(2,1)*drlz + alr(2,2)*dz2r)

_hr = dth

phr = dph

calculate responses in dt/dh and dp/dh _o unig r perturba¢ion

dzlh ffi rlh_r + rlh_p*pr + rlh_tstr

dr2h = r2h_r + r2h_p*pr + r2h_t*tr
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drlz = rlr_r ÷ rlz_pepz + rlz_t*tr

dr2z = r2r_r + r2r_pepr + r2r_t*tr

dth = -(ath(1,1)*dxlh + aih(1,2)*dx2h)

dpb = -(aih(2,1)*dxlh + aih(2,2)*dx2h)

trh = dth

prh = dph

d_h = -(air(1,1)sdxlr + air(1,2)*dx2r)

dph = -(air(2,1)*dxlr + air(2,2)*dx2r)
tx_r = d_h

prr = dph

set final first and second derivatives wrt (r,h)

p_r = pr

t_r = tr

p_h = ph

t_h = th

p_hh = phh

t_hh = thh

p_rr = prr
__rr = trr

p_rh = .5*(prh+phz)

t_rh = .S*(trh+thr)

return

end

C

C

C

C

C

C

C

C

C

¢

C

C

C

C

C

subroutine nonstag(hO,rho,q, pO,pO_r,pO_q,

• rO,rO_r,rO_q )

Calculates s_agna_ton presses and d_usi_y for

specified :_a_attenauthalpy, denslSy, and speed.

Input:

hO stagnat £on enChalpy

rho denJlty

q .pe_

OUtlm_:
pO station pzeesure

po_r dpO/dr
pO_q epO/dq
rO 8ta6na¢ ton density

rO_r drO/dz

rO_q drO/dq

lapllclt reals4 (a-h,a,o-z)

dimension a(2,2), aI(2,2), b(2,2)

reals4 h_p,h_t
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C

C

CCC

C

co--on /non, u/

all, bta, pi, tau, zO

comaon /non.fit/

c2, cl, cO

data eps /S.OE-6/

z(pp,tt) = 1. + pp*pi*phi (1./(tau*tt))

z_p(pp,tt) = pi*phi (1./(tau*tt))

z_t(pp,tt) = pp*pi*phid(l./(taustt)) / (-tau*tt**2)

h = hO - .5.q*.2

h_q = - q

h_hO = 1.0

r = rho

C

C

set input preliure and temperature and derivatives

call ngaspt(h,r,p,p_r,p_h,p_rz,p_hh,p_rh,

t,t_r,t_h,t_rr,t_hh,t_rh)

set entropy • and derivatives wrt p,t
ttc = 1./(tau*t)

ttc_t = -l./(tau*t**2)

tic_it = 2./(tau*tee3)

ph = phi(tic)

phd = phid(ttc)

phdd = phidd(ttc)

phddd = phiddd(ttc)

ph_t = phd • ttc_t

phd_t = phdd * ttc_t

phdd_t = phddd * ttc_t

• = alfelog(t) + 2.0*alfebtaet

- p'p•*( _*phd *ttc_t + ph ) - log(p)

i_p = - pi*( t*phd *ttc_t ÷ ph ) - 1.0/p
• _t = alf/t + 2.0*alfebta

- p*pi*( phd *ttc_t + ph_t

• + t_hd_tettc_t

+ t*phd *ttc_tt )
c

c .... initial gue|s for pO,tO from imperfect gas

cc if(bta.eq.O.O) then

cc tO = hO/al£

cc elle

¢c tO = (-1.0 + •qrt(1.O + 4.0*btaehO/alf)) / (2.0*bta)
cc audif

cc pO = p • exp(-alfelog(t) + alf*2.0ebtae(1.O-t))
C

tO = t

pO = p
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C ....

C

C

C

lerton loop to converge on correcZ pO,tO
itcon = IS

do 100 iter=l, i$con

tic = l./(tau*tO)

tic_tO = -l./(tau*tO**2)

tic_fro = 2./(tau*tO**3)

ph = phi(tic)

phd = phid(ttc)

phdd = phidd(ttc)

phddd = phiddd(ttc)

ph_tO = phd * ttc_tO

phd_tO = phdd * ttc_tO

phdd_tO = phddd * tic_tO

enthalpy residual

reJl = (alf*(tO + b_a*tO**2) + pO*pi/tau*phd )/zO

rl_pO = ( pi/tau*phd )/zO

rlotO = (alf*(l.O+ bta*tO*2.) + pO*pi/tau*phd_tO)/zO

entropy

reg2 =

&

r2_pO =

r2_tO =

k

k

residual

all*log(tO) + 2.0*alf*bta*tO

pO*pi*( tO*phd *tic_tO + ph ) - log(pO)

- pie( tO*phd *ttc_tO + ph ) - l.O/pO

all/tO + 2.0*alf*bta

pO*pi*( phd *ttc_tO + ph_tO

+ tOSphd_tOsttc_tO

+ tOaphd _ttc_ttO )

getup and invert Jacobian matrix

a(1,1) = rl_tO

a(1,2) = rl_pO

a(2,1) : r2_tO

a(2,2) = r2_pO

detlnv = 1.0 / (aCi,1)em(2,2) - a(1,2)ea(2,1))

ai(1,1) = a(2,2)edetlnv

ai(2,2) = a(1,1)edatlnv

ai(1,2) = -m(1,2)sd.tlnv

ai(2,1) = -a(2,1)edetlnv

sa_ Ionon vtrimbles

dt • -(ai(1,1)eresl + 8i(1,2)eres2)

d_ = -(_L(2,1)e=esl + ai(2,2)eres2)

r].z : 1.0

if(r].xsdt: .IF. 2.S,pO) rlx : 2.S*pO/dp
if(rlx*_p .it. -.8,I_0) rlx : Q.e_pOl_p

£f(r].xedt ._t. 2.5stO) rlx = 2.5etO/d_
if(rlxedt .it. o.SStO) rlx = -.8.tO/dr

update variables

hO
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C

lO0

C

C

2

C

C ....

C

C ....

CCC

CCC

C

C ....

C

C

Cw---

CCC

C

pO = pO + rlx*dp

_0 = tO + rlx*dt

convergence check

if(abm(dp/pO) .le. eps .and. abs(dt/tO) .le. apt) go to 2

continue

write(*,*) 'NONSTiG: Convergence failure.'

write(*,*) 'dp dT :',dp, dt

write(*,*) 'po To h r:',pO,tO,h,r

continue

set residual derivatives wrt (s,hO)

rl s = O.

r2_s = -I.0

rl_h = -1.0

r2_h = O.

b(1,1) = rl_s

b(1,2) = rl_h

b(2,1) = r2_s

b(2,2) = r2_h

set (tO,pO) derivatives _rt (s,hO)

tO_s = -(ai(1,1)eb(1,1) + ai(1,2)*b(2,1))

tO_hO : -(ai(1,1)*b(1,2) + al(l,2)*b(2,2))

pO_s = -(ai(2,1)sb(1,1) + ai(2,2)*b(2,1))

pO_hO = -(at(2,1)*b(1,2) + ai(2,2)*b(2,2))

conver_ derivatives er_ (s,hO) to er_ (p,t,hO)

tO_t = tO_s*s_t

tO_p = tO_leS_p

pO_t = pO_seS_t

pO_p = pO_s*s_p

set stqnation density rO and darivatlves _ (pO,tO)

zz = z(pO,tO)

zz_p = z_p(pO,tO)

zz__ = z_t(pO,_O)

rO = zO/zz * pO/tO

rO_z = -zO/zze*2 • pO/tO

rO_pO = rO_z*zz_p + zO/(zzezO)

tO_tO = rO_z*zz_t - zO*pO/(zzetO*e2)

convert derivatives from m (pO,tO) to wr$ (p,t,hO)

rO_p = rO_pOepO_p + rO_tOetO_p

rO_t = rO_pO_pO_t + rO_tOetO_t

rO_hO = rO_pO*pO_hO + rOtOstO_hO
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c .... convor$ derivatives from grz (p,t) to erz (r,q,hO)
rO r = rO_pep_r + rO_t*t_r

rO q = (rO_pip_h + rO_t*t h)*h_q

pO_r = pO_p*p_r + pO_t*t_r

pO_q = (pO_p*p_h + pO_t*t_h)*h_q
C

c¢¢ rO_hO = (rO_p*p_h + rO_t*t_h)*h_hO + rO_hO

¢cc pO_hO = (pO_p*p_h + pO_t*t_h)*h_hO + pO_hO
C

return

end

real*4 function phi(ttc)

implicit reale4(a-h,m,o-z)

C ........

c Returns function phi used in non-ideality pazameter
c Z = 1 + pi*phi(ttc)
C ........

common /nonfit/

l c2, cl, cO

phi = c2*ttc**2 + cl*ttc + cO

return

end

reali4 function phid(ttc)

inplicit reali4(a-h,m,o-z)

common /nonfit/

i c2, cl, cO

phld = 2.*c2ettc + cl

return

end

C

reale4 functlonphldd(ttc)

intlli¢tt reali4(a-h,n,o-z)

comion /noniit/

i c2, cl, cO

plLtmkl = 2. ec2

retu.rn

end

reil*4 functlonphlddd(ttc)

iliplicii rule4(a-h,n,o-z)

coumon /no.it/

• c2, cl, cO
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phlddd = O.

C

return

end

subroutine hgent(hO,r,q, s)

Returns entropy s from input vaziables hO,r,q

con:on /nongas/

all, bta, pi, tau, zO
common /nonfit/

t c2, cl, cO

h = hO - .5.q*.2

C

c .... set input pressure and temperature and derivatives

call ngupt(h,r,p,p_r,p_h,p_rr,p_hh,p_rh,

t,t_r,t_h,t_rr,t_hh,t_rh)

tic = 1./(tau*t)

+tc_t = -1./(tau*t**2)

ph = phi(tic)

phd = phid(ttc)

s = all*log(t) + 2.0*alf*bta*t

- p*pi*(t*phd*ttc_t + ph) - log(p)

return

end

subroutine non_v(hO,r,q, gam,gma_r,gal_q)

c Returns "equlvLlen_" ganma for BL density prof£1o

co-,,on /nongu/

k Llf, bta, pi, tau, zO

common [nonfJ.$/

k c2, cl, cO

C

c .... see e¢a¢ic snChalpy

h : hO - 0.$*q**2

h_q = -q

C

c .... set pressure and temperatuzo and dorivm$ives

call ngaspt (h, r,p,p_r,p_h,p_rr,p_hh,p_rh,

k t, t_r, t_h, t_rr, t_hh, t_rh)

C

c .... set speed of sound squared: a'2 -- alp/dr (at ¢onmtant s)

asq = p_r / (I. - p_h/r)



asq,r = p_rr / (I, - p_h/r)

- p_r / (I. - p_h/r)**2 *(p_h/r**2 - p_rh/r)

asq_h = p_rh / (I. - p_h/r)

• + p_r / (I. - p_h/r)**2 *p_hh/r

t_c = l./(tau*t)

_Cc_t = -l./(Cau*t**2)

tic_it = 2,/(_au*t**3)

ph = phi(tic)

phd = phld(t_c)

phdd = phldd(_tc)

phddd = phlddd(t_c)

z = I. + p*pi*ph

z_p = pi*ph

z t = p*pi*phd*tZc_t

cp = ( alf*(1.0 + 2.0*bta*t)

+ p*pi/_au* phdds_tc_t ) / zO

cp_p = ( pi/tau* phddst_c_t ) / zO

cp__ = ( all*( 2.0*bta )

• + pspi/taus(phddd*ttc_t*82 + phddettc__t) ) / zO

zet = h/(cp*t)*(l.O - p*pi/(C*Cau)*phd/z) * zO

zet_h = l.O/(cp*C)*(1.0 - p*pi/(t*_au)*phd/z) * zO

zet_p =

&

zet_t =

&

&

h/(cp*_)*( - pi/(t*_au)*phd/z

- p*pl/(t*Zau)*phd/zs(-z_p/z)) * zO

(ze_/cp)*cp_p

h/(cp*$)*( - pepi/(t*$au)Sphd/z*(-z_t/z - l.O/t)

- pmpi/(ts_au)*phdd*t$c_t/z ) * zO

(zet/cp)*cp_t - (ze_/t)

_e/m

gsmr

gam_h

gaa_p

gu_t

= uq/(h*zet) + 1.0

= alq_r/(hezez)

= uq/(hszet)e(-zet_h/zet - l.O/h) + aiq_h/(heze_)

= aJq/(heze_)e(-zet_p/zet)

= uq/(hezst)s(-ze__t/zet)

gam_pep_h + gma_t*t_h + gam_h

gaa_p*p_r + gam_t*t_r + gam_r

gaa.q = gaa_h*h_q

subrout4_e sonAc(hO,pO,rO, q,p,r)

c calculates sonic quan_i_ies q,p,r

c from specified sonic quantities hO,pO,rO
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C"

c

c

c

c

10

11

C

implicit real (m)

data epm / l.Oe-5 /

initialize _ith perfect gas

gam = rOshO / (rO*hO - pO)

gml = gam - 1.0

q = sqr_(2.0*hO/(2.0/gml + 1.0))

trat : 1.0 + O.5*gml

p = pO*trat**(-gam/gml)

r = rO*trat**(-1.O/gml)

converge on non-ideal values by forcing N'2 = I, and patag = pO

do I0 liars=l, 15

call nideal(hO,r,q, p ,p_r ,p_q,

msq,mJq_r,msq_q )

call nonstag(hO,r,q, pstag,patag_r,pstag_q,

rstag,rstag_r,rstag_q )

resl = msq - 1.0

all = msq_r

a12 = msq_q

rea2 = pstag - pO

a21 = pstag_r

a22 = pstag_q

detinv = 1.0/(all*a22 - a12*a21)

dr = -(resl*a22 - a12 *res2)*detinv

dq = -(all *ros2 - reel*a21 )*detinv

dp = p_r*dr + p_q*dq

rlz : 1.0

if(rlx*dz .gt. 1.5*z) zlx = 1.Set/dr

if(rlx*dz .i_. -.6*r) rlx = -.6*r/dz

if(rlx*dq .gt. 1.6.q) rlx = 1.6*q/dq

If(rlx*dq .I_. -.e,q) rlx = -.e*q/dq

r = r + rlxedr

q = q + rlxedq

p - p + rlz.dp

dlax = aaaxl( abs(dz)/r , abs(dq)/q )

if(_ .it. spa) So $o 11

continue

write(*,*) 'sonic: conversence fa/led.

continue

,daax

return

end ! son/c
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Appendix B

High-Order Airfoil Farfield Boundary Conditions

for Ideal and Non-Ideal Gas Flows

The steady flow around an airfoil away from shock wakes and viscous regions has constant

entropy and total enthalpy, and hence is also irrotational. These properties hold whether the fluid

is an ideal or a non-ideal gas. The flow can then still be decribed by the velocity potential @ or

the perturbation potential ¢. Assuming the freestream is aligned with the z-axis, the following

relations are obtained.

4' = q_,(z + ¢) (1)

V_-_/ = q_[(1+¢_)i + CuJ] (2)

q2 = iq-]2 = q2 [(l+¢x) 2 + ¢2u] (3)

1 2
_V(q 2) = qVq = qoo[ (¢x_+¢_ ¢_+¢uCxu)i

+ (¢_u + ¢_ ¢_ + ¢_¢_)j] (4)

The governing flow equation is:

or

v.(pv_) = o (5)

v_ = -V!.w (6)
P

In isentropic flow (s = constant), p = p(p), so

dp sV p = -_p

and hence

P
Vp - a2 qVq (7)

1
W2_ = -_qVq. V@ (8)

a 2V2dp = qVq.[(l+¢z)i + _j] (9)

where a is the speed of sound. In isentropic, adiabatic flow, the speed of sound is uniquely related

to the speed: a = a(q). For a perfect gas, a(q) is given by

a s 2 7 -1
= a_ 2 (q2_q_) (10)

while for an imperfect and/or non-ideal gas it is necessary here to linearize a(q) about the freestream

conditions.

a2 , d(a_)
_- a® + d(ql) [q2-ql][ '_ (il)

It is convenient to define an "equivalent" ratio of specific heats 7' for the non-ideal gas as

d(a_)
7' = 1 - 2 d(q_) , (12)
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so that the a(q) relation for the non-ideal gas can be compactly written as

a2 2 7'-1( _)_- a°° 2 q2 _ q

For a perfect gas, this reverts to the exact form (10) since in this case 7' = 7.

(13)

It is interesting

to note that 7' can easily be less than unity for heavy gases such as sulfur hexafluoride, while

invariably 7 > 1 for perfect gases.

Substituting for a s, qS, and qVq in equation (9), we obtain

._ _ q_ (2¢. + _ + ¢ [¢= + ¢_] = q_ [(1 + ¢_)(¢= + ¢_ ¢= + ¢_¢_)

+ ¢_ (¢_ + ¢_ ¢_ + ¢_¢_)1 (14)

F 7,-I l

[1 2 M_2 2¢=J [¢z=+¢_1 : M2[¢-=+2¢= Cz=+2¢u¢=_l + O(¢3) (15)

' ' ()- M®)¢== + ¢_ : M s [(7 +1)¢.¢_= + (7'-l)_bz¢_ + 2_b_C=u] + CO ¢3 (16)

where M= = q=/a_ is the freestream Mach number.

Equation (16) is the 2D second- order P randtl- Glauert equation which governs small-perturbation

non-ideal compressible potential flows. It has the same form as the equation for a perfect ideal gas

as derived in references [4] and [5], except that the usual ratio of specific heats 7 is replaced by

the "equivalent" value 7' defined by equation (12). Wagner and Schmidt [1] have considered the

first-order version of equation (16) using 7' in lieu of 7-

In terms of the Prandtl-Glauert coordinates

= z//_ (17)

# = y (is)

_s : _2 + _2 (19)

"V (20)
0 = arctan_

where/3 = _--k-_, the general solution to equation (16) is

where

: _r ° r_

+ D=cos0 + D_sin8
2_r f 27r

+ \ 2_r ) kl-'_'--ks

1(-/'+1 ._)kl = _ _--_- +

Terms of order 1/_ s and above have been discarded.

(21)

(22)



In a flow solver,the circulationr can be determined eitherdirectlyfrom the liftper unitspan

Lp(Euleror Navier-Stokescode),
Ll

r- p_q_ (23)

or indirectlyby specifyinga Kutta condition(potentialsolveror MSES). The source strengthZ

can be determined from the totalprofiledrag per unitspan D _,or from the asymptotic mass defect

behind the airfoilincludingthe shock wake.

£)i

- p®q_ (24)

In the caseofa potentialsolver,D _shouldnot includethe wave drag sincethereisno shock wake

(unlessan entropy correctionscheme isemployed). Note that r and Z here have unitsof length

since_bin (1) correspondsto a unitfreestreamspeed.

Cole and Cook [5]giveexplicitexpressionsforthe doubletcoefficientsDz and D_ in terms of

fieldintegralsoverthe domain. Unfortunately,theseexpressionsare unwieldy and for a non-ideal

gas would be ratherexpensive.A simplerand economicalapproach isto iterativelyupdate D_ and

D u by minimizing the mismatch between V6 and the velocity_olution from the flow solveron the

outer boundary. The approach taken in reference[4],forexample, isto minimize the integral

1
/ IVq_× _olutionl_ dz (25)I=_

taken over the outermost streamlines.The doublet terms in the farfieldexpansion (21) decay

fasterthan the others,and so can be neglectedforsufficientlydistantouter boundaries.However,

retainingthem greatlyreducesthesensitivityofthe solutionto domain size,especiallyfortransonic

flows[6].

With itsterm coefficientsdefined,equation (21) givesa very accurate representationof the

perturbationpotential_ away from the airfoil.The gradientof equation (21) accuratelygives

the totalvelocity_ via relation(2).Either_b,_,or an appropriatederivedquantitymay then be

imposed at the outer domain boundary as a high-orderboundary condition. A potentialsolver

would typicallyimpose _ or Oct�On, whereas an Euler or Navier-Stokessolverwould typically

impose the flowangle at the inflowand pressureat the outflow,both being determined from V6.
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Appendix C

Shape Parameter Relations

for Ideal and Non-Ideal Gas Flows

The major influence of compressibility on boundary layer behavior is a non-uniform density

profile, which alters the layer's response to pressure gradients. In an integral scheme for adiabatic

flows, this effect is mostly captured by the correlation between shape parameter H, the kinematic

shape parameter Ha, and the edge Mach number Me. The shape parameters are defined as

f(1 - RU) dy f(1 - U) dy

H - f(1 - U)RUdy Ha - f(1 - U)Vdy (26)

where V(y) and R(y) are the velocity and density profiles.

V = u R = p (27)
ue Pe

Since the velocity profile U(y) and hence Ha are only weakly affected by compressibility, reduction

of the density profile R(y) near the wall due to adiabatic heating will increase H as can be seen

from its definition (26). In turn, the von-Karman integral momentum equation

dO
_ C1 (2 + g- M_) _._-du....._ (28)

dz 2 u, dz

shows that an increase in H will increase the momentum thickness growth rate d_/dz for a given

adverse pressure gradient. The integral boundary layer formulation in MSES (and its precursor

ISES [4]) employs a correlation of the form Hk(H, Me) for air. This is re-derived for the non-ideal

gas model as follows.

As developed in Appendix A, the state equation of a non-ideal gas can be written as

P
- Z(p, T) (29)

pT_T

while the corresponding caloric equation in differential form is

dh = _p(r) dT + d[pSr(T)] __ en(r) dT + p._"(r) dT = cp(p, T) dT (30)

where the approximation is made on the basis that dp __ 0 across a boundary layer. Linearizing

the caloric equation across the boundary layer we have

h-h, : %(T-T,) (31)

• 1= -1 c-_

"_ -I %,T_

The non-ideality factor Z for most non-ideal gases has the form

Z(p, T) = 1 + P---¢(rc/r)
Pc

(32)

(33)
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where Pc and Tc are the criticalpressure and temperature. This can likewise be linearized about

the edge conditions as follows.

p_ T

-Z = 1 - 1 (35)p_T, "-Z

Combining this with equation (32), we have

-_- = 1 - 1 . (36)Pc T_ %.T_ Z_

Using the equation of state (29), the density profile is then related to the T and Z profiles as

R- p - T_Zep
p_ T Z p_

T_ Z,
- T Z (37)

with the usual boundary layer approximation p __ pe being made. Using relations (32) and (36),

the density profile can be written in terms of the enthalpy profile alone.

R = 1 + - 1 _ 1 - (38)T, c ,T, z,J

-- 1+ (_---_-1) h. (1 P'Tc¢:_peT, Z,/ + O[(Lh,/h- 1 2,)] (39)

R -_ 1+(_-_-1)( (40)

where

C- %,T, 1 (41)pcT, Z,]

For turbulent adiabatic boundary layer flows, it is reasonable to assume a constant stagnation

enthalpy across the layer, although this is strictly true only for a turbulent Prandtl number of

unity. Since the turbulent diffusion mechanisms of momentum and heat are essentially the same

in a gas (convection by eddies), turbulent Prandtl numbers are typically close to unity. Hence,

the assumption of constant stagnation enthalpy is reasonable. With h0 denoting the stagnation

enthalpy, the velocity and static enthalpy profiles are then related by

h. _ ho - u_/2 1 - i_- (42)
_ u2 U2h ho U2/2 1 - _-_

u 2

h_ce_1 - _ (U2-1) (43)
u2 U2h 1_2_:_

and the density and velocity profilesare then related by

u 2

R = 1 + _ (U 2- 1)C. (44)
u2 U 21-2-- _

12



Since u_/ho and ( are both functions of the edge Mach number Me, the density profile (44)

implicitly defines Hk in terms of H and Me. To obtain this relation in closed form, it is necessary

to assume a small-defect profile

U = 1-e ; e<< 1 (45)

so that the density profile can be approximated by

u 2

R = 1 + 1-_-_ (-2e)¢ + C9(e2) (46)

R = 1 - (%-l)M_e( (47)

with the convenient "viscous" equivalent ratio of specific heats 7, defined by

B 2

2 M_( -

a_ t
% - 1 +

ho - u_/2

with a_ being the speed of sound at the boundary layer edge.

The shape parameter H now becomes

(48)

(49)

f{i-[i-(-yo-i)M. - dyH =
f{e[1 - (%-l)M_ E] (1 - e)} dy

f_dy + (%-l)M_f_(1 - e)dy

fe(l - e)dy - (%-I)M_ fe_-(1 - e)dy

fe dy

re(1 - _)dy
+ + O(d)

-_ H, + (%-1)M_ (50)

The required shape parameter correlation is therefore

Hk = H- (%-1)M_. (51)

In the limiting case of a perfect gas, 7,, = 7. For 7 : 1.4 (air), MSES presently uses Whitfield's

correlation [7] in this case is

Hk = H - 0.29M_
1 + 0.113M_ (52)

= H - 0.4M: + O(M:) (53)

which is seentobe consistentwith the more generalnon-idealgas result(51).Whitfield'sparticular

form (52),however, isreportedlymore accuratefor Prandtl numbers somewhat lessthan unity
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where the total enthalpy profile is not quite uniform as was assumed here. It is therefore appropriate

to put correlation (51) into Whitfield's form, while also incorporating the Prandtl number. The

final shape parameter correlation is

H - Pr(7,-1)M _

H_(H,M_) = 1 + (1-Pr)(7,-1)M _ (54)

which reduces to Whitfield's form for 7, = 1.4, ( = 1, and Pr = 0.7, and to the non-ideal gas form

(51) for Pr = 1 which was assumed in its derivation.

It noteworthy that for most heavy gases 7v-1 is considerably smaller than for air. For SF8 with

stagnation conditions at STP and Me = 1, for example, 7v-1 = 0.17 for SF6 and 7_-1 = 7-1 = 0.4

for air. Hence, the influence of Me in SF6 is smaller, and H values near a shock in SF6 will be

smaller than those in air. The smaller H values in turn reduce the boundary layer's response to

adverse pressure gradients as discussed above. The airfoil will therefore be more resistant to Math

drag-divergence in SF6 than in air.

For simplicity, the implementation of the shape parameter correlation (54) in MSES assumes

that 7_ is constant, being evaluated from (49) at sonic edge conditions: ae = ue = a* , Me = 1.

Given the degree of approximation used in deriving (54), it is felt that neglecting the already weak

dependence of 7, on ue is justified. Freezing 7_ at the sonic conditions is judged appropriate since

its effect on H becomes significant only for Me close to unity.
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